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Abstract. Most of our understanding of the atmosphere is based on observations and their comparison with model simulations.

In the middle atmosphere studies it is common practice to use an approach, where the model dynamics is at least partly based

on temperature and wind fields from an external meteorological model. In this work we test how closely satellite measurements

of a few central trace gases agree with this kind of model simulation. We use collocated vertical profiles where each satellite

measurement is compared to the closest model data.5

We compare profiles and distributions of O3, NO2, and NO3 from the Global Ozone Monitoring by Occultation of Stars

instrument (GOMOS) on ENVISAT with simulations by the Whole Atmosphere Community Climate Model (WACCM). GO-

MOS measurements are from nighttime. Our comparisons show that in the stratosphere outside the polar regions differences

in ozone between GOMOS and WACCM are small. The correlation of monthly and 5-day time series show very high corre-

lation. In the tropical region in the lower stratosphere WACCM shows consistently larger values than GOMOS. In the polar10

areas GOMOS measurements show ozone losses that can be connected to the elevated NO2 concentrations from solar storms

and strong down draft events from the thermosphere that take place in the winter polar regions. In the mesosphere above the

ozone minimum at 0.01 hPa (or 80 km) large differences are found between WACCM and GOMOS. Correlation can still be

high, but at the second ozone peak correlation falls strongly and the ozone abundance from WACCM is about 60% smaller

than from GOMOS. Outside the polar areas and in the validity region 25–0.3 hPa GOMOS and WACCM NO2 agree reason-15

ably well and the correlation is reasonably high except in the upper stratosphere in the southern latitudes. In the polar areas,

where solar particle precipitation and downward transport from the thermosphere enhance NOX abundance, large differences

are found between GOMOS and WACCM NO2. For NO3, we find WACCM values agreeing largely with GOMOS with very

high correlation. We show that NO3 values depend very sensitively on temperature. The ratio of O3 to NO3 follows closely to

the prediction from the equilibrium chemical theory. Abrupt temperature increases from Sudden Stratospheric Warmings are20

reflected as sudden enhancements of GOMOS and WACCM NO3 values. NO3 values can therefore be used as a proxy for

major stratospheric warmings.
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1 Introduction

The quality of atmospheric modelling is crucial for making reliable predictions for future climate. The minimum quality

requirement for any model is that already measured central atmospheric variables can be simulated within reasonable accuracy.

The increasing number of global satellite missions since the discovery of the ozone hole offers a good opportunity to compare

models with observed data. Moreover, there is now improving understanding of the accuracy of satellite measurements (see5

e.g. Hubert et al., 2016; Hegglin and Tegtmeier, 2017; Tegtmeier et al., 2013) and this is an essential ingredient for a model-

measurement comparison.

In this work, we make use of the Whole Atmosphere Community Climate Model (WACCM) from the National Center for

Atmospheric Research and compare its results to satellite observations from the Global Ozone Monitoring by Occultation of

Stars instrument (GOMOS). We concentrate on an atmospheric region ranging from the stratosphere to lower thermosphere10

(20–100 km) and on three important minor constituents O3, NO2, and NO3 measured by GOMOS.

Ozone is a central chemical element in the middle atmosphere and essential for stopping short wave UV-light from entering

into the biosphere. Ozone has diurnal variability, which in the stratosphere is weak, but at 90–95 km nighttime ozone can be

an order of magnitude more abundant that during daytime (see e.g. Kyrölä et al. (2010a)). Measured satellite ozone profiles

are validated using ozone sondes and ozone lidars. Comparisons to other satellite measurements also help to establish the data15

quality. Nitrogen dioxide, as a member of the odd nitrogen family, participates in catalytic destruction of ozone especially in

the upper stratosphere (Lary, 1997). In polar areas precipitation of charged particles creates vast amount of NOx which has

a long chemical lifetime in the polar darkness. When isolated by a stable vortex, enhanced NOx can descend into the upper

stratosphere, which then leads to natural ozone loss when NOx becomes illuminated by increasing solar light after the winter

season (e.g. Seppälä et al., 2007; Päivärinta et al., 2016). Polar NOx is also enhanced by polar descent from the thermosphere20

and exceptionally large increases have measured after so-called Sudden Stratospheric Warming events (SSW) where the vortex

structure is disturbed (see Hauchecorne et al., 2007; Randall et al., 2009; Smith et al., 2009; Sofieva et al., 2012; Chandran and

Collins, 2014). Nitrogen trioxide is a part of the O3-NO2-NO chemistry. Nitrogen trioxide has a very strong diurnal variation

and it is almost absent during daytime.

WACCM is the atmospheric component of the Community Earth System Model (CESM) (Neale et al., 2013). WACCM is25

a chemistry - climate model spanning the range of altitude from Earth’s surface to the thermosphere (approximately 140 km)

with 88 vertical levels of variable vertical resolution of 1.1 km in the troposphere to 3.5 km above 65 km (Marsh et al., 2013).

Horizontal resolution is 1.9 deg. latitude by 2.5 deg. longitude and the model time step is 30 minutes. In the present analysis

version 4 of WACCM was run in specified dynamics mode by constraining dynamical fields to Modern-Era Retrospective

Analysis for Research and Applications (MERRA) meteorological re-analyses below 1 hPa. Above the stratopause WACCM30

dynamics are solved in a free running mode, i.e. temperature and dynamic fields are self-determined (although in practice they

are still strongly modulated by MERRA). The version of WACCM used in this work includes chemistry of the lower, D-region

ionosphere (see Verronen et al., 2016).
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WACCM has been evaluated in many model-measurement intercomparison studies. In Eyring et al. (2013), WACCM’s

total ozone values and trends were shown to be in reasonable agreement with satellite observations. Results showed that

WACCM compares well with HALOE’s stratospheric ozone measurements. Comparisons at specific atmospheric conditions

have provided more information on the agreement between WACCM and observations. In Tweedy et al. (2013), the simulated

behaviour of the secondary ozone maximum is compared against SABER measurements during a major sudden warming. The

behaviour during SSWs was found to be similar while the nighttime ozone amount is generally underestimated by about a factor5

of two in WACCM. Comparisons of NOx during polar winter, when NOx is influenced by energetic particle precipitation, have

been made in many studies (Jackman et al., 2011; Funke et al., 2011; Randall et al., 2015; Andersson et al., 2016; Funke et al.,

2017). From these studies it seems that WACCM tends to underestimate mesospheric NOx by a factor of ∼4.

GOMOS (Bertaux et al., 2010) was an instrument on the European Space Agency’s ENVISAT satellite which was in op-

eration for just over ten years between 2002 and 2012. The measurement method of GOMOS, stellar occultation, uses light10

from 180 brightest stars allowing global coverage of measurements with good vertical resolution. The occultation method is

self-calibrating because the occulted star’s spectrum is also measured without the atmospheric intervention and therefore the

primary source data for retrievals (i.e., transmissions) are in principle stable. GOMOS measured 880,000 stellar occultations

during the lifetime of ENVISAT. Ozone’s relatively large abundance makes it quite an easily observable constituent from satel-

lite instruments using optical measurements. GOMOS measurements can be used to retrieve ozone at altitudes ranging from15

the troposphere to the mesosphere and lower thermosphere. NO2 and NO3 can be retrieved in the stratosphere.

Our comparison of GOMOS measurements with WACCM simulations will be based on comparison of individual, co-located

profile measurements, whereas in many other model-data studies climatological or other average quantities are used. Our

method avoids the problem of uneven (in geolocation and time) sampling that accompanies limb and especially limb oc-

cultation measurements and distorts climatologies. In the Coupled Model Intercomparison Project (CMIP) and in the more20

specialised Chemistry-Climate Model Initiative (CCMI) several atmospheric (or more generally earth system) models includ-

ing CESM/WACCM have been compared with each other and also with observations (see Tilmes et al., 2016; Morgenstern

et al., 2017; Eyring et al., 2010, 2013). Most of the interest in these studies is targeted on future climate projections especially

in the troposphere. In this work we are interested to see how well a model simulates the whole middle atmosphere from the

upper troposphere up to the lower thermosphere in a limited time range 2002–2011.25

Our study is structured as follows. In Sec. 2 we introduce the GOMOS instrument and the measurements we are using in

this work. In Sec. the main properties of the WACCM model are introduced. The comparison method is introduced in Sec. 4

and individual comparisons of O3, NO2 and NO3 are presented in Secs. 5–7.

2 GOMOS measurements

GOMOS was a stellar occultation instrument on board ENVISAT that was operational from 2002 to 2012 (for GOMOS30

overviews, see Bertaux et al. (2010); ESA (2001), and https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/

envisat/instruments/gomos). GOMOS measured occultations during both day and night, but measurements during daytime
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suffer from scattered solar light that had to be estimated and removed in order to isolate the stellar signal. So far this has

approach not led to satisfactory results. In this work we use only GOMOS nighttime measurements.

GOMOS nighttime profiles of O3, NO2 and NO3 are retrieved from the spectral range 248–690 nm. The integration time of

the measurements is 0.5 s, which provides an altitude sampling resolution of 0.2–1.6 km depending on the tangent altitude and

the azimuth angle of the measurement. The retrieved ozone profiles have a 2 km vertical resolution below 30 km and a 3 km

resolution above 40 km, whereas NO2 and NO3 have a 3 km vertical resolution at all altitudes. Details of the GOMOS retrieval5

algorithms and data quality are discussed in detail in Kyrölä et al. (2010b) and Tamminen et al. (2010). In this work we use

GOMOS data from the ESA processing version 6 in a vertically gridded form (for data access, see Sec. 10). We remove those

data points that have been measured when ENVISAT was located in the region of the South Atlantic Anomaly. The illumination

conditions for the GOMOS measurements are determined by two solar zenith angles controlling solar light at the tangent point

and at the satellite location. At the tangent point we require that the zenith angle is greater than 104◦. It has been shown that for10

zenith angles smaller than 118◦ at the satellite position some stray light can be present, but we have not found any discernible

change in our results ignoring this restriction altogether. In the GOMOS gridded ozone data there are a special flag that labels

stars that do not provide sufficient signal-to-noise ratio for reliable ozone retrieval in the mesosphere-lower thermosphere (faint

and cool stars). Profiles considered as outlier either in the stratopshre or in the mesosphere are also flagged. We set all three

flags equal to zero for ozone comparisons. The total number of GOMOS nighttime measurements is then 238 664. For NO215

and NO3 the ozone flags can be ignored and we get 377 881 measurements. The number of measurements peaked in 2004 and

declined thereafter due to the problems connected to the steering mechanism of the instrument. During 2005 no measurements

were collected from the period of from February to May due to this steering problem. Note that the polar regions are not

covered by nighttime measurements during summer months. For other latitudes measurements cover all seasons.

The first comprehensive validation of GOMOS nighttime stratospheric ozone (ESA data version 4) against ground-based20

and balloon-borne instruments was presented in Meijer et al. (2004). The results showed that GOMOS nighttime ozone agrees

within a few percent with the correlative data (sondes and lidars) in the stratosphere outside polar areas. An update of this work

was issued by van Gijsel et al. (2010) using the ESA software version 5 and results were similar to Meijer et al. (2004). In this

work we are using the ESA software version 6. All three versions (4–6) provide very similar results. The version 6 has been

under validation in the ESA projects Valid-2 and Multi-TASTE and the validation reports are available from https://earth.esa.25

int/web/sppa/mission-performance/esa-missions/envisat/gomos/cal-val/validation-activities. Recent similar validation results

can be found from Hubert et al. (2016) and Sofieva et al. (2016). Results show differences to be ±3% between 20–45 km.

Below 20 km GOMOS show increasing positive bias in the tropics, but in this work we restrict analysis to higher altitudes

where such bias is not observed. GOMOS and so-called gold standard of satellite ozone profiles, SAGE II, were compared

in Kyrölä et al. (2013) and differences ±4% in 23–55 km were observed when the SAGE II sunrise and sunset occultations30

were treated separately. The diurnal variation of ozone in the stratosphere and some sunset-sunrise instrumental factors are

contributing to these numbers (see also Sakazaki et al. (2015)). Climatological comparisons of several limb viewing satellite

instruments including GOMOS are presented in Tegtmeier et al. (2013).
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GOMOS is able to measure ozone up to 100 km when stars with sufficiently high effective temperature are used. For

mesospheric heights there are no real validation results, but we can get some insight from comparisons to other satellite35

measurements. In Verronen et al. (2005) GOMOS and MIPAS ozone were found to agree within ±10% in 25–70 km. Similar

results were obtained in Ceccherini et al. (2008). SABER and GOMOS were compared in Smith et al. (2008, 2013), which

showed that GOMOS mesospheric ozone values are about 20% smaller than SABER.

GOMOS measurements can nominally be used to retrieve NO2 at altitudes between 25 and 50 km, while in the polar

regions altitudes up to about 70 km can be reached during winter months due to higher NO2 concentrations. There is only5

one publication where GOMOS NO2 measurements have been compared with in-situ measurements. It is the comparison with

balloon-borne instruments (Renard et al., 2008), which indicated an agreement within±25%. In addition, several comparisons

against satellite-based observations have been made. Verronen et al. (2009) found that GOMOS NO2 values are 10–25% higher

than MIPAS. Comparison with ACE-FTS in Kerzenmacher et al. (2008) showed better than 10% agreement between 23 and

42 km. At higher altitudes larger differences were found, but the necessary correction for diurnal variation made results very10

uncertain. Nitrogen dioxide has a strong diurnal variation with maximum and minimum amounts seen during early night and

early morning, respectively (for diurnal cycle from model simulations, see e.g., Brasseur and Solomon (2005); Kyrölä et al.

(2010a). Climatological comparison with HALOE can be found in Hauchecorne et al. (2005).

GOMOS retrieval of NO3 covers the altitude range 25–50 km. During daytime NO3 almost vanishes by photolysis but

rises quickly after the sunset from the reactions between O3 and NO2 (for diurnal cycle from model simulations, see e.g.15

Brasseur and Solomon (2005); Kyrölä et al. (2010a)). There are only few NO3 measurements to which to compare GOMOS

measurements. GOMOS NO3 have been compared with two balloon measurements in Renard et al. (2008), but with inconclu-

sive results. In Hakkarainen et al. (2012) GOMOS measurements were compared with SAGE III lunar measurements and the

agreement was found to be within ± 25%.

3 SD-WACCM-D simulations20

WACCM includes the Ox, NOx, Clx and BrO families and CH4 with its reaction products. The number of reactions is 217

with 59 species. Heterogeneous reactions with three types of aerosols are also included. The model includes orographic and

nonorographic gravity waves (see Garcia et al., 2007). The upper boundary temperature condition is given by the MSIS-model

by Hedin (1991). The same model is used to specify O, O2, H and N upper boundary conditions. At the lower boundary

observations are used to specify the surface mixing ratios of CFC-gases, CH3, N2O and other important gases for stratospheric25

processes. The solar irradiance is provided by the model of Lean et al. (2005) which takes into account the spectral and flux

variations during the solar cycle. WACCM includes ionisation rates from Solar Proton Events (SPE) and auroral electrons.

More details of the WACCM model can be found from Marsh et al. (2013), Smith et al. (2011), and Garcia et al. (2007).

In this work we use SD-WACCM-D version 4, i.e., the model a) includes chemistry of the lower, D-region ionosphere

required for detailed EPP simulations (see Verronen et al., 2016) and b) is run in specified dynamics (SD) mode by constraining30

dynamical fields below 1 hPa to Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological
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re-analyses (see Rienecker et al., 2011). SD mode allows for realistic representation of atmospheric dynamics making the

simulations directly comparable to satellite observations, while the D-region ion chemistry has been shown to improve the

polar mesospheric comparisons for many species, including NOx (Andersson et al., 2016). In order to provide an ion source

for the low-latitude D-region chemistry, ionisation due to galactic cosmic radiation is included in our simulations using the

Nowcast of Atmospheric Ionising Radiation for Aviation Safety (NAIRAS) model (for details, see Jackman et al., 2016). For

this study, we also include the ionisation due to 30–1000 keV radiation belt electron precipitation in the energetic particle5

forcing. For details on the precipitation model and ionisation rate calculation, see van de Kamp et al. (2016). In this energy

range, electrons add to HOx and NOx production in-situ at 60–90 km altitude, directly affecting mesospheric ozone chemistry

at geomagnetic latitudes between 55◦ and 72◦ (Matthes et al., 2016). The ionisation rates are applied in WACCM as daily,

zonal mean values which depend on the geomagnetic Ap index and latitude.

4 Comparison method10

In order to compare GOMOS vertical profiles with WACCM simulations each satellite measurement is paired with the closest

WACCM latitude-longitude-time profile (i.e., no interpolation between different WACCM grid cells is done). The geolocation

of the satellite measurement is defined by the average value when the line-of-sight of the instrument is between the altitudes

20–50 km. In this study, we compare all GOMOS nighttime measurements from 2002 to 2011 to a WACCM simulation run for

the same period. For the satellite measurements the comparison is complete in the sense that every measurement finds its model15

partner with a very good co-location limits: latitude difference smaller than 0.95 deg., longitude difference smaller than 1.25

deg, and time difference shorter than 15 min. This method avoids the problem of uneven (in geolocation and time) sampling

that accompanies limb and especially limb occultation measurements and which may distort trace gas climatologies and their

comparisons.

A retrieved GOMOS constituent profile is given at the measurement’s refracted line-of-sight altitudes that vary from one20

measurement to another. In this work we interpolate (linearly) the profiles to a regular geometric altitude grid with one km

step. GOMOS constituent abundances are given in number densities. WACCM runs on a pressure grid and abundances are

mixing ratios. In order to compare satellite measurements with WACCM we need either to change satellite measurements

to the pressure grid of WACCM or to change WACCM results to the altitude grid used by satellite data. We have selected

to work using the WACCM’s pressure grid. Therefore, every GOMOS measurement is interpolated to the altitudes obtained25

from the geopotential heights of the WACCM’s latitude-longitude cell nearest to the satellite measurement at the time of the

measurement. This brings the number densities of satellites to the pressure grid of the model. In this work we show results in

mixing ratios as they more suitable for illustrating results. The transformation to mixing ratios is accomplished by the neutral

density distribution of WACCM (coming in the SD-version from MERRA and internal dynamics).

The method we use for comparing collocated satellite and WACCM profiles and their differences at each altitude z is to30

calculate the bias over a suitable number of profiles in a selected region (time and geolocation) as

B(z) = 〈fW
k (z)− fG

k (z)〉, (1)
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where fW
k denotes WACCM and fG

k GOMOS collocated vertical profiles. Satellite gridded profiles have some missing data

from flagged data points or from restrictions of the altitude coverage of measurements. The corresponding WACCM data points

are ignored in the average in order to preserve the complete correspondence of the data sets. For practical reasons we will also

use the bias in a relative sense as

∆(z) = 100
B(z)
〈fG

k (z)〉 . (2)5

The scaling factor (denominator) is calculated from WACCM in the same region as the bias.

Calculation of the average estimates is based on dividing spatial and temporal extensions to suitable scales. We average data

within 10 degrees in latitude and use zonal averaging. For the polar regions we also show results from a larger latitudinal range

(from 60 to 90 degrees south and north). In the time domain the analysis is based on monthly averages, but for the polar regions

we use 5-day time series in order to capture fast polar processes keeping still reasonable statistical accuracy. From the time10

series we calculate the WACCM-GOMOS mission average biases and correlation coefficients C(z).

The formula Eq. (1) includes averages over number of GOMOS-WACCM data pairs. In this work we extend the average

over all quality filtered data 2002–2011. Before averaging clear outliers in data are removed by |x−median(x)|> 3×1.4826×
median(|x−median(x))|. Averages are calculated using the median estimator. The uncertainty is calculated by the error of the

median ( see e.g., Eq. (1) in Kyrölä et al. (2010a)).15

For GOMOS knowing the validity limits of retrieved data is especially important as all 180 target stars have their own valid

altitude ranges and outside the ranges results are often contaminated by noise. The GOMOS data we are using include star

specific valid altitude limits for all three gases of this work. These limits are based on yearly averages. In order to handle

rapidly changing events we need more dynamic determination of the validity ranges. Therefore, we calculate for each gas,

latitudinal zone and time series period the t-value profile (the median value divided by its uncertainty) for each star included20

in the domain inspected. For the final average (over different stars) we include only those portions from the individual profiles

where t > 2. The accepted t > 2 altitudes may form several separate altitude regions and some of them may not represent

reliably the atmospheric state. In order to eradicate noise generated t > 2 regions, we accept only two largest continuous

regions, both exceeding a prescribed minimum size. Two regions are needed in order to handle ozone profiles extending from

lower stratosphere to the lower thermosphere. In the ozone minimum region around 0.01 hPa (80 km) density values are so25

small that t > 2 condition is not usually achieved but t-values recover again at higher altitudes. A similar case can be found

with polar NO2 profiles during solar storms where large increases of NO2 take place above the normal validity range of NO2.

The t-value method has at least one weakness and it is connected to the different behaviour of GOMOS retrievals and

WACCM simulations at the situations where the density of a retrieved gas approaches to zero. When the density decreases

the WACCM statistical distribution (from an averaging domain) changes from the approximate normal distribution (natural30

variation) to a nearly lognormal-type of distribution because of the physical lower limit zero in the model. The GOMOS

retrieval method does not limit the retrieved gas values by a positivity condition as this could be a source of bias. As the

density approaches to zero the GOMOS distribution remains usually nearly normal covering also negative values. Ideally this

distribution would settle down around zero with the width given by the noise of the instrument. Unfortunately sometimes this
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does not happen and we see high altitude values with t > 2. These "ghost" detections may be generated by the interference

of the other gases retrieved at the same time. At the moment we do not have any data based method to identify these ghost

values. As a precautionary measure we reject those altitudes where the GOMOS distribution (from a given star, region, time,

altitude) includes more than 20% negative values. For polar latitudes we apply a more relaxed limit of one-third, which allows5

the analysis to capture fast developing processes.

The final average form the averaging region and period of time is done by first making averages for each star and then

averaging over all stars involved. This provides more equal contribution from different latitudes covered and no star can

dominate the average by its high number of measurements.

5 Ozone10

Figure 1. Ozone yearly median profiles from GOMOS Sirius occultations (solid lines) and from paired WACCM profiles (dashed lines) from

2002 to 2011 in the latitude band 40◦S–60◦S. The vertical axis is pressure. The approximate geometrical altitude is also shown. The colour

coding in the legend boxes shows the measurement year and in the parenthesis the number of measurements.

As an example of retrieved satellite ozone profiles and paired WACCM profiles, we show in Fig. 1 observations from the

brightest star in the sky, Sirius. It provides the best signal-to-noise ratio at all wavelengths of GOMOS stellar occultations.

These measurements were taking place every year from the late August to mid-September In Fig. 1 we show the yearly median

profiles from both the GOMOS observations and the WACCM simulation. It is evident that the observations and the model

simulations generally agree well at all altitudes except in the neighbourhood of the second ozone peak (at 0.001 hPa, 91 km)15

where large differences and yearly variations are evident. The mission average 2002–2011 relative uncertainty of the GOMOS

and WACCM Sirius profiles is better than 2% in the altitude range 100-0.05 hPa. The relative uncertainty grows to 10% at

8
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and around the ozone minimum at 0.01 hPa, but it reaches again 2% at the second peak and diverges at altitudes above. The

WACCM-GOMOS relative difference stays inside ±10% between 50-0.05 hPa, but increases up to 60% at the second peak

and grows still at higher altitudes. Differences are statistically sound in the mesosphere whereas in the lower atmosphere the

differences fluctuate on both sides of zero.

Figure 2. The median relative difference (WACCM-GOMOS)/median(GOMOS) of the ozone mixing ratio (in %) in the stratosphere over

2002–2011. Latitudes are from –90◦ to +90◦ with 10◦ resolution. A crossed cell marks a point where the difference does not deviate from

zero in a statistical significant way. A cell with a dot marks missing data.

In order to get a more comprehensive view of WACCM-GOMOS differences for all latitudes we consider now ozone profiles5

from all eligible GOMOS occulted stars. Profiles flagged by the ozone flags are not included, but all others are included by

those pressure levels that pass the t-value and the distribution criteria discussed earlier in Sec. 4. The altitude-latitude relative

difference distribution between GOMOS and WACCM as a median average of 5-day (polar) and monthly (non-polar) time

series from 2002 to 2011 is shown in Fig. 2 for the stratosphere and in Fig. 3 for the mesosphere-lower thermosphere. The

validity range that applies to all latitudes is from 0.00012 hPa to 85 hPa. In both figures the differences are mostly statistically10

significant, points where the WACCM-GOMOS difference is insignificant are marked by crosses. In the stratosphere outside

the polar latitudes differences are generally small, WACCM values being 0–6 % smaller than GOMOS. Both GOMOS and

WACCM main ozone maxima are at the Equator at 10.3 hPa and the values agree within 2.5%. In the tropics in the lower

stratosphere we see that WACCM values are larger (up to 20%) than GOMOS. This ozone surplus is found every year, but its

seasonal strength varies. Notice that the tropical positive bias region of GOMOS discussed earlier in Sec. 2 resides below this15

region (not covered by the figure). In the polar regions GOMOS and WACCM agree within -2%–+6% except around 15 hPa

9
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Figure 3. The median relative difference (WACCM-GOMOS)/median(GOMOS) of the ozone mixing ratio (in %) in the mesosphere over

2002–2011. Latitudes are from –90◦ to +90◦ with 10◦ resolution. A crossed cell marks a point where the difference does not deviate from

zero in a statistical significant way. A cell with a dot marks missing data.

in 60◦N–90◦N where WACCM is up to 20% larger than GOMOS. Overall we can say that in the stratosphere GOMOS and

WACCM agree nearly within the uncertainty estimates from GOMOS validation except in two cases mentioned.

Figure 3 shows the mesospheric differences, which are moderate up to the altitude 0.05 hPa or even up to the altitude 0.005

hPa outside the polar latitudes. Around 0.1 hPa in the polar areas GOMOS and WACCM agree within±5%. During wintertime20

a so-called tertiary ozone peak appears in this region (see e.g. Marsh et al., 2001; Sofieva et al., 2009). In the upper mesosphere

differences grow strongly and WACCM values are about 60% smaller than GOMOS around the second ozone peak. A similar

model-measurement difference has been seen in a Hammonia model study (see Schmidt et al. (2006)). Maximum mixing values

are seen at the Equator where GOMOS mixing ratio is 10.5 ppm at 0.0005 hPa (96 km) and WACCM 4 ppm at 0.001 hPa (91

km) (Notice that WACCM’s coarse pressure grid makes these estimates uncertain). In the studies of Tweedy et al. (2013); Smith25

et al. (2014) the difference was found to be around 70%. The ozone minimum is located at 0.009–0.015 hPa with minimum

values above 0.1 ppm. Notice that GOMOS data uncertainty is large at the minimum and the relative difference varies from

positive to negative. Overall we can say that in the mesosphere there is clear difference between GOMOS and WACCM. This

result is in agreement between earlier comparisons. The GOMOS retrieval is very straightforward in the mesosphere and it is

difficult to see how it could be in error by this large amount.30

The ten year mission averaged bias is, of course, a narrow measure on the compatibility of GOMOS and WACCM. We now

investigate how GOMOS and WACCM ozone values develop in time. Fig. 4 shows the correlation coefficient of GOMOS and

WACCM from monthly (non-polar) and 5-day (polar) time series as a function of the altitude and latitude. In the stratosphere
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Figure 4. WACCM and GOMOS ozone mixing ratio correlation over 2002–2011. In the polar areas it is calculated from 5-day time series, in

other latitudes it is calculated from monthly time series. Latitudes are from -90◦ to 90◦ with 10◦ resolution. A cell with a dot marks missing

data.

Figure 5. WACCM and GOMOS ozone monthly time series 1.8.2002–31.1.2005. Three latitude belts are shown: 50◦S–30◦S (red lines),

10◦S–10◦N (green) and 30◦N–50◦N (blue).
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Figure 6. WACCM and GOMOS ozone mixing ratio 5-day time series from 2002–2011 in the Arctic 60◦N–90◦N (GOMOS: blue, WACCM:

red) and in the Antarctic 60◦S–90◦S (GOMOS: black, WACCM: magenta).

Figure 7. WACCM and GOMOS ozone mixing ratio difference from Fig. 6 in the Arctic 60◦N–90◦N (blue) and in the Antarctic 60◦S–90◦S

(red).

the correlation is very high 0.85-0.95. At altitudes higher than 1 hPa the correlation declines outside the polar areas, but

increases again after the ozone minimum before final decay starting just below the second ozone peak.35
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Fig. 5 shows the comparison of the GOMOS and WACCM ozone mixing ratio monthly time series from three latitude

bands and at three pressure levels from August 2002 to January 2005. At the second maximum there is a large bias between

the WACCM and GOMOS as expected from results already shown. Ozone in all three latitude bands shows semi-annual

oscillations. Near the main maximum time series seem to follow each other quite closely and the correlation coefficient is even

0.98. At the lowest altitude we can see that WACCM values in the tropics are consistently higher than GOMOS resulting to the

positive tropical bias in Fig. 2 wheres at mid-latitudes there is a good agreement.

In Fig. 6 we show the 5-day ozone mixing ratio time series in both polar regions. The Arctic and Antarctic time series are5

shown in the same plot because GOMOS nighttime coverage is complementary in these regions. Differences are shown in

Fig.7 using the mixing ratio unit. The highest altitude shows again large differences at the second peak. The middle panel

shows results near the main ozone peak at the position where Fig. 2 indicated WACCM to be 20% larger than GOMOS in the

Arctic. The positive bias seems to be consistent in time and much larger in the north. The lowest altitude shows the regular

Antarctic ozone hole pattern. In the Arctic the exceptionally large ozone loss in 2011 (see Manney et al., 2011) is clearly10

seen.The Antarctic ozone holes are seen equally by WACCM and GOMOS whereas the Arctic hole 2011 is under estimated

by WACCM. A similar even larger difference can be seen in 2010 but now without a real large reduction of ozone.

6 Nitrogen dioxide

Figure 8. NO2 yearly median profiles from GOMOS Sirius occultations (solid lines) and paired WACCM profiles (dashed lines) from 2002

to 2011 in the latitude band 40◦S–60◦S. The colour coding in the legend boxes show the measurement year and in the parenthesis the number

of measurements.
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We start again with GOMOS profiles from the Sirius occultations in the latitude band 40◦S–60◦S in Fig. 8. The validity

region for Sirius NO2 is from 100 hPa to 0.2 hPa in this latitude region. The average uncertainty of the GOMOS and WACCM15

median profiles is better than 5% in 50–0.5 hPa. The relative GOMOS-WACCM difference is -10–+20% in 50–0.5 hPa. Around

the maximum 5 hPa the difference is ± 3%. The yearly variation in profiles and differences is large.

In Fig. 9 we show the median relative difference between WACCM and GOMOS as a function of latitude and altitude during

2002–2011. The most conspicuous feature of this figure is the variation of the upper valid altitude limit. In the polar regions

GOMOS measurements reach up to near 0.05 hPa whereas at the non-polar latitudes the highest altitude is about 0.4 hPa. The

lower limit is 72 hPa. The variation of the upper validity limit is the consequence of the data screening using t-values and the5

positivity condition of the distribution (see Sec. 4). It is important to realise that the high altitude results from the polar regions

are solely coming from the few short living NO2 enhancement events whereas the lower polar altitudes are seen by GOMOS

during the whole winter season. In the polar areas at high altitudes WACCM values are lower, by 60%, than GOMOS. High

GOMOS NO2 values are related to extraordinary events that will discussed below. The differences are mostly statistically

significant, points where the difference are not significant are marked by crosses. Outside the polar areas the relative difference10

is 0–10%, near the NO2 maximum GOMOS and WACCM agree with ± 5%. The NO2 maximum is at 1.9 hPa by WACCM

and at 2.9 hPa by GOMOS. GOMOS and WACCM NO2 values agree within the uncertainty estimates of GOMOS data from

validation and intercomparison studies except in the polar regions

Figure 9. The median relative NO2 difference (WACCM-GOMOS)/median(GOMOS)) in % over 2002–2011. Latitudes are from -90◦ to

90◦ with 10◦ resolution. A cross marks a point where the difference does not deviate from zero in a statistical significant way. A cell with a

dot marks missing data.
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Figure 10. WACCM and GOMOS NO2 mixing ratio correlation over 2002–2011. Latitudes are from -90◦ to 90◦ with 10◦ resolution. A cell

with a dot marks missing data.

Before studying the GOMOS-WACCM disagreement in the polar regions we show in Fig. 10 the GOMOS-WACCM NO2

correlation coefficient’s altitude-latitude distribution. Correlation is relatively high everywhere except in the southern latitudes15

in the upper stratosphere-lower mesosphere. The moderate correlation in the polar latitudes extends up to the mesosphere even

if the mixing ratios differ.

Figure 11 shows GOMOS and WACCM NO2 time series at three pressure levels in the Arctic and Antarctic from 2002–

2011. The differences are shown in Fig. 12 in the mixing ratio unit. In both polar regions almost every winter high NO2 events

are detected at the highest altitude shown. These enhancements are also partly seen at lower altitudes. The most eminent peaks

are taking place during the 2003 Antarctic winter and during the Arctic winter 2003–2004. Both events can be distinguished

at all three levels shown. We consider in more detail the Arctic event that took place between the end of October 2003 and5

the end of March 2004. This period covered the strong proton events on October 28–29, 2003 and November 2–3, 2003 (the

Halloween event) and the strong descent period that started in mid-January 2004. The complexity of events is illustrated in

Fig. 13 and in Fig. 14. From these figures it is clear that mission average results like Fig. 9 cannot be used when we try to

find underlying reasons for the differences between GOMOS and WACCM. Various fast processes in the polar regions are so

intermingled that investigations must use well resolved time series to separate them.10

Elevated NO2 amounts, observed during the winter periods, are known to be generated by particle precipitation events (see

e.g. Seppälä et al., 2004, 2007; Funke et al., 2011) and enhanced downward transport of NOX from the lower thermosphere (e.g.

Hauchecorne et al., 2007; Randall et al., 2009; Päivärinta et al., 2016; Funke et al., 2017). WACCM and GOMOS both capture

the enhanced NO2 values around 0.5 hPa, produced by the SPEs in the end of October, and the descent until mid December.
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WACCM seems to overestimate the magnitude of this enhancement by 5–10 ppb, which is in agreement with earlier results15

on NOy (Funke et al., 2011, Fig. 15). WACCM reproduces only a fraction of the larger increase observed at 0.05 hPa in the

beginning of December. This is also true for the strong descent from mesosphere to upper stratosphere observed in January–

April. Values measured by GOMOS are up to ten times larger than those simulated by WACCM. Mesospheric NO2, and NOx

in general, have been underestimated in WACCM during this period due to 1) a combination of incomplete simulation of

high-energy EEP (i.e., in-situ production) and 2) recovery from a sudden stratospheric warming in early January, resulting in

insufficient descent (see (Randall et al., 2015)).

Figure 11. NO2 mixing ratio 5-day time series at three pressure levels from the Arctic 60◦N–90◦N (GOMOS: blue, WACCM: red) and the

Antarctic 60◦S–90◦S (GOMOS: black, WACCM: magenta). Notice that the y-axis cuts do not show the full values of NO2 peaks during

November 2003–April 2004. More details from this period are shown in Figs. 13–14.

7 Nitrogen trioxide

In Fig. 15 we show NO3 profiles from the Sirius occultations in the latitude band 40◦S–60◦S. The relative uncertainty is better

than 10% and the relative difference from -20% to +5% in 1–50 hPa. Near the peak density 2 hPa (40 km) WACCM and5

GOMOS values are within ± 2% but at lower altitudes WACCM values are consistently about 20% smaller than GOMOS.

In Fig. 16 we show the median relative differences from 2002 to 2011 between GOMOS and WACCM as a function of

latitude and altitude. The differences are mostly statistically significant, crossed cells mark differences that are not statistically

significant. The GOMOS NO3 peaks at 1.9 hPa and WACCM at 2.35 hPa. Around the peak of the NO3 profile the difference

between WACCM and GOMOS is inside ±5%. This is much better that uncertainty estimates of GOMOS NO3. In the polar10

regions, the maximum region excluded, WACCM NO3 is up to 60% smaller than GOMOS.
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Figure 12. WACCM and GOMOS NO2 mixing ratio difference 5-day time series 2002–2011 in the Arctic 60◦N–90◦N (blue) and in the

Antarctic 60◦S–90◦S (red).

Figure 13. GOMOS NO2 mixing ratio from 5-day time series (upper panel) and WACCM-GOMOS relative difference (lower panel) from

15.9.2003–31.4.2004 in the Arctic 60◦N–90◦N.

In Fig. 17 we show the GOMOS-WACCM NO3 correlation coefficient as a function of the altitude and latitude. Around

the NO3 maximum all latitudes show very high correlations 0.95. The secret behind this high correlation is the fact that the
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Figure 14. NO2 mixing ratio at three pressure levels from 5-day time series from GOMOS (blue lines) and WACCM (red lines) from

15.9.2003–31.4.2004 to in the Arctic 60◦N–90◦N.

Figure 15. NO3 median yearly profiles from GOMOS Sirius occultations (solid lines) and paired WACCM profiles(dashed lines) from 2002

to 2011 in the latitude band 40◦S–60◦S. The colour coding in the legend boxes shows the measurement year and the number of measurements

in the parenthesis.
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Figure 16. The relative NO3 difference (WACCM-GOMOS)/median(GOMOS) in % during 2002–2011. Latitudes are from -90◦ to 90◦ with

10◦ resolution. A cross marks a point where the difference does not deviate from zero in a statistical significant way. A cell with a dot marks

missing data.

Figure 17. WACCM and GOMOS NO3 mixing ratio correlation over 2002–2011. Latitudes are from -90◦ to 90◦ with 10◦ resolution. A cell

with a dot marks missing data.
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mixing ratio of NO3 is very sensitive to temperature (see Hauchecorne et al., 2005; Kyrölä et al., 2010a). When we calculate

the correlation of WACCM’s NO3 with the model temperature (in the stratosphere MERRA), we get values from 0.8 to 0.95 in15

the altitude range 2–50 hPa. Between GOMOS NO3 and MERRA a similar positive correlation is achieved between 2–5 hPa.

Temperature-related issues are a probable cause for the observed NO3 differences in the polar regions evident in Fig. 16. It is

plausible to state that in the polar regions MERRA underestimates real temperatures except in the neighbourhood of the NO3

maximum. The temporal cycle is correct but the absolute values differ.

Figure 18. NO3 mixing ratio 5-day time series at 3.7 hPa from GOMOS (blue lines) and WACCM (red lines) from 2002 to 2011 in the

Arctic 60◦N–90◦N (upper panel) and in the Antarctic 60◦S–90◦S (middle panel). In the bottom panel the mixing ratio difference is shown

for the Arctic (blue) and the Antarctic (red) in the mixing ratio unit.

Dramatic examples about the temperature dependence of NO3 can be seen in the polar time series of Fig. 18. In the Arctic,

the strongest peaks in mixing ratio are caused by the large changes in temperature during Sudden Stratospheric Warming

events (e.g. Sofieva et al., 2012; Butler et al., 2017). In the Antarctic the NO3 cycle follows the normal annual cycle of the

temperature with one exception: During the 5-day period around 28 July 2010 NO3 values have a major jump (for analysis of5

this case, see de Laat and van Weele (2011)). It seems that at the sudden warmings (with the Antarctic case excluded) WACCM

values considerably exceed the corresponding GOMOS values and consequently MERRA overestimates the real temperature.

A detailed evolution of the strong Arctic event in December 2003–January 2004 is shown in Fig.19. WACCM and GOMOS

values show similar temporal development but the absolute values differ.

We can further study the temperature dependence of NO3. In Fig. 20 we have plotted GOMOS and WACCM mixing values10

as a function of MERRA temperature from 3.7 hPa. The dependence on temperature is nearly exponential from both sources in

the polar regions. The very high values in the Arctic are not fitted by the exponential function. Tropical values can equally well
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Figure 19. The upper panel: WACCM (red) and GOMOS (blue) NO3 5-day time series 7.12.2003–18.1.2004 in the Arctic 60◦N–90◦N at

3.7 hPa. Lower panel: MERRA temperature for the same period and altitude.

Figure 20. NO3-temperature scatter-plot at 3.7 hPa. The left panel: the Arctic 60◦N–90◦N. The middle panel: Tropics 10◦S –10◦N. The

right panel: the Antarctic 60◦S –90◦S. Red dots are from WACCM and blue dots from GOMOS. Exponential fits are done to temperature

gridded WACCM data. Data for all latitudes are from 5-day time series from 2002–2011.
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fitted by a linear model. In ref. Brasseur and Solomon (2005) a formula for the ratio of O3 to NO3 densities is derived assuming

night time chemical equilibrium. In Fig. 21 we show how the experimental values from GOMOS and modelling values from

WACCM compares with this theoretical prediction. The GOMOS-WACCM agreement is very good and the agreement with15

theory is also good up to 2.1 hPa.

Figure 21. The NO3/O3 ratio from the chemical theory in Brasseur and Solomon (2005) (left panel). Ratios calculated from the WACCM

simulation (middle panel) and GOMOS measurements (right panel). Data covers 2002–2011.

8 Conclusions

In this work we have compared the state-of-the-art chemistry - climate model WACCM to measurements from the satellite

instrument GOMOS. Measurements cover years from 2002 to 2011 and they are from nighttime. We have compared O3, NO2

and NO3 mixing ratios using monthly (non-polar) and 5-day time series. We have also calculated the correlation of GOMOS

and WACCM time series. The comparison is done with collocated profiles, which eliminates differences from the natural5

variability and sampling patterns.

This comparison has required a considerable effort to ensure the quality of the observational data. GOMOS nighttime

observations collect photons from 180 different stars varying widely with their luminosity and effective temperature. This

variation causes large differences in the quality of trace gas profiles. For ozone we have used three GOMOS ozone data flags to

remove hopelessly poor profiles, for NO2 and NO3 there are no such quality flags available. The main problem of all GOMOS10

trace gas profiles is to decide upon the altitude limits of valid data. In the present work we have determined the limits for all

the time steps, all latitude bands and for all stars using two criteria. First, we have demanded that for valid altitudes the t-value

(GOMOS density/uncertainty) is larger than 2 and second, that the distribution of GOMOS values is located mainly on positive
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density values. Moreover, we have rejected orphan valid values. This approach has produced altitude limits of valid data that

earlier have been estimated using a priori knowledge.15

Our comparisons show that in the stratosphere (50–1 hPa) outside the polar regions differences in ozone between GOMOS

and WACCM are small and within the uncertainties of GOMOS measurements. The difference patterns are consistent in time

during 2002–2011. In the tropical region in the lower stratosphere WACCM measurements show consistently larger values

than GOMOS. In the polar areas GOMOS nighttime measurements show ozone losses that are connected to the elevated NO2

concentrations from solar storms and strong downdraft events from the thermosphere. In the mesosphere above the ozone

minimum at 0.01 hPa (or 80 km) large differences are found between WACCM and GOMOS. Differences exist in the values of

the mixing ratio and also in the correlation of monthly time series at the second ozone maximum. Differences may be connected

to WACCM’s temperatures in the mesosphere or to specific parameter values that control the gravity wave dissipation in5

WACCM (see Smith et al. (2014)). The correlation of GOMOS and WACCM time series is high except the non-polar region

in the mesosphere below the ozone minimum and at the altitudes from the second ozone maximum and above.

Outside the polar areas and in the validity region 50–0.3 hPa WACCM and GOMOS NO2 values agree reasonably well. In

the polar areas, where solar particle precipitation and downward transport from the thermosphere enhance NO2 abundances,

GOMOS values are much larger than WACCM. Correlation of monthly time series is moderate in the stratosphere except the10

upper stratosphere in the southern latitudes. GOMOS measurements and simulation by the new version of WACCM used in

this work agree well for the direct particle initiated NO2 increases, but for the downdraft cases GOMOS values are much larger.

The overall correlation of the polar 5-day time series is still quite high in the middle atmosphere.

For NO3, we find WACCM values agree largely with GOMOS. In the validity region 25–1.2 hPa the correlation is very high.

Because the NO3 abundance is controlled by temperature the WACCM-GOMOS NO3 difference can be used as an indicator15

about the accuracy of MERRA temperature information. We found that NO3 temperature can be fitted to large extent by an

exponential function. The ozone vs. NO3 ratio follows quite accurately the result from an equilibrium chemical theory. We

found that in polar areas the NO3 mixing ratio can be used as a proxy for Sudden Stratospheric Warmings and provide quality

information about the model temperatures.

In this work we have tried to expose agreements and disagreements between the WACCM model and the GOMOS measure-20

ments. To understand underlaying reasons for differences a detailed and presumably difficult analysis of the model physics and

chemistry. Perhaps the only exception is temperature from the external meteorological model that we think is the reason for

NO3 differences in the polar regions. On the measurement side, there is still room for better algorithms and more extensive val-

idation especially in the polar regions. We have compared O3, NO2 and NO3 distributions between WACCM and GOMOS. A

wider comparison including additional constituents from other satellite instruments would help to find the underlaying reasons25

for differences.
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9 Code availability

The SD-WACCM-D model will be available from NCAR. All the WACCM and satellite data have been processed using

Matlab-software. The specific routines used in this work can be requested from the first author.

10 Data availability

All data can be requested form the first author. Data will be placed on publicly accessible server in due time. The size of

the GOMOS-paired WACCM data set is 2.2 Gb. The GOMOS data used in this work is a Matlab version of the so-called user

friendly (UFP) GOMOS data. These UFP data (in netCDF-4 format) are available form the ESA data portal https://earth.esa.int/

web/guest/missions/esa-operational-eo-missions/envisat/news/-/article/envisat-gomos-level-2-products-in-netcdf4-change-of-access.5

The collocated Matlab-data sets include WACCM-data and the paired satellite data. The size: 4.8 Gb.
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